Collective hydration dynamics of guanidinium chloride solutions and its possible role in protein denaturation: a terahertz spectroscopic study.
نویسندگان
چکیده
The remarkable ability of guanidinium chloride (GdmCl) to denature proteins is a well studied yet controversial phenomenon; the exact molecular mechanism is still debatable, especially the role of hydration dynamics, which has been paid less attention. In the present contribution, we have addressed the issue of whether the collective hydrogen bond dynamics of water gets perturbed in the presence of GdmCl and its possible impact on the denaturation of a globular protein human serum albumin (HSA), using terahertz (THz) time domain spectroscopy (TTDS) in the frequency range of 0.3-2.0 THz. The collective hydrogen bond dynamics is determined by fitting the obtained complex dielectric response in a multiple Debye relaxation model. To compare the results, the studies were extended to two more salts: tetramethylguanidinium chloride (TMGdmCl) and sodium chloride (NaCl). It was concluded that the change in hydration dynamics plays a definite role in the protein denaturation process.
منابع مشابه
Molecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملInteractions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
In order to clarify the mechanism of denaturant-induced unfolding of proteins we have calculated the interactions between hydrophobic and ionic species in aqueous guanidinium chloride and urea solutions using molecular dynamics simulations. Hydrophobic association is not significantly changed in urea or guanidinium chloride solutions. The strength of interaction between ion pairs is greatly dim...
متن کاملDo hydration dynamics follow the structural perturbation during thermal denaturation of a protein: a terahertz absorption study.
We investigate the thermal denaturation of human serum albumin and the associated solvation using terahertz (THz) spectroscopy in aqueous buffer solution. Far- and near-ultraviolet circular dichroism spectroscopy reveal that the protein undergoes a native (N) to extended (E) state transition at temperature ≤55°C with a marginal change in the secondary and tertiary structure. At 70°C, the protei...
متن کاملTemperature-dependent femtosecond-resolved hydration dynamics of water in aqueous guanidinium hydrochloride solution.
The influence of ion dissolution in water is still controversial. The challenge posed to the existing concept of dissolved ions acting as water structure makers and structure breakers through recent studies calls for more experimental evidence. The temperature-dependent relaxation dynamics of water in bulk and in ionic salt solutions can give an idea about the hydrogen-bonded network and hence ...
متن کاملProbe conformational dynamics of proteins in aqueous solutions by terahertz spectroscopy
Proteins solvated in their biologically milieu are expected to exhibit strong absorption in the terahertz frequencies, that contain information on their global and sub-global collective vibrational modes (conformational dynamics) and global dynamic correlations among solvent water and proteins. The dynamics play an important role in enzymatic activities of proteins, but obtaining an accurate an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 42 شماره
صفحات -
تاریخ انتشار 2014